Stem cell treatment could offer one-end-solution to Diabetes
Insulin-producing cells grown in the lab could provide a possible cure for the age-long disease (diabetes).
Type 1 diabetes is an auto¬immune disease that wipes out insulin-producing pancreatic beta cells from the body and raises blood glucose to dangerously high levels. These high levels of Blood sugar level can be even fatal. Patients are being administered insulin and given other medications to maintain blood sugar level. To those who cannot maintain their blood sugar level, they are given beta-cell transplants but to tolerate beta cell transplants; patients have to take immunosuppressive drugs as well.
A report by a research group at Harvard University tells us that they used insulin-producing cells derived from human embryonic stem cells (ESCs) and induced pluripotent stem cells to lower blood glucose levels in mice. Nowadays, many laboratories are getting rapid progress in human stem cell technology to develop those cells that are functionally equivalent to beta-cells and the other pancreatic cell types. Other groups are developing novel biomaterials to encapsulate such cells and protect them against the immune system without the need for immunosuppressant.
Major pharmaceutical companies and life sciences venture capital firms have invested more than $100 million in each of the three most prominent biotechnological industries to bring such treatments into clinical use:
- Cambridge
- Massachusetts–based companies Semma Therapeutics
- Sigilon Therapeutics, and ViaCyte of San Diego
Researchers of UC San Francisco have transformed human stem cells into mature insulin-producing cells for the first time, a breakthrough in the effort to develop a cure for type-1 (T1) Diabetes. Replacing these cells, which are lost in patients with T1 diabetes, has long been a dream of regenerative medicine, but until now scientists had not been able to find out how to produce cells in a lab dish that work as they do in healthy adults.
What is T1 diabetes?
T1 diabetes is an autoimmune disorder that destroys the insulin-producing beta cells of the pancreas, typically in childhood. Without insulin’s ability to regulate glucose levels in the blood, spikes in blood sugar can cause severe organ damage and eventually death. The condition can be managed by taking regular shots of insulin with meals. However, people with type 1 diabetes still often experience serious health consequences like kidney failure, heart disease and stroke. Patients facing life-threatening complications of their condition may be eligible for a pancreas transplant from a deceased donor, but these are rare, and they are supposed to wait a long time.
Researchers have just made a breakthrough that might one day make these technologies obsolete, by transforming human stem cells into functional insulin-producing cells (also known as beta cells) – at least in mice.
“We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies,” explains one of the team, Matthias Hebrok from the University of California San Francisco (UCSF).
“This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes.”
Type-1 diabetes is characterized by a loss of insulin due to the immune system destroying cells in the pancreas – hence, type 1 diabetics need to introduce their insulin manually. Although this is a pretty good system, it’s not perfect.
Making insulin-producing cells from stem cells
Diabetes can be cured through an entire pancreas transplant or the transplantation of donor cells that produce insulin, but both of these options are limited because they rely on deceased donors. Scientists had already succeeded in turning stem cells into beta cells, but those cells remained stuck at an early stage in their maturity. That meant they weren’t responsive to blood glucose and weren’t able to secrete insulin in the right way.
Scientists at the University of California San Francisco made a breakthrough in the effort to cure diabetes mellitus type 1.
For the first time, researchers transformed human stem cells into mature insulin-producing cells, which could replace those lost in patients with the autoimmune. There is currently no known way to prevent type-1 (T1) diabetes, which destroys insulin production in the pancreas, limits glucose regulation, and results in high blood sugar levels. The condition can be managed with regular shots of insulin, but people with the disease often experience serious health complications like kidney failure, heart disease, and stroke.
“We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies,” according to Matthias Hebrok, senior author of a study published last week in the journal Nature Cell Biology.
“This is a critical step toward our goal of creating cells that could be transplanted into patients with diabetes,” Hebrok, director of the UCSF Diabetes Center, said in a statement.
Islets of Langerhans are groupings of cells that contain healthy beta cells, among others. As beta cells develop, they have to separate physically from the pancreas to form these islets.
The team artificially separated the pancreatic stem cells and regrouped them into these islet clusters. When they did this, the cells matured rapidly and become responsive to blood sugar. In fact, the islet clusters developed in ways “never before seen” in a lab. After producing these mature cells, the team transplanted them into mice. Within days, the cells were producing insulin similar to the islets in the mice. While the study has been successful in mice, it still needs to go through more rigorous testing to see if it would work for humans as well. But the research is up-and-coming. “We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies. This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes,” He said.
“We’re finally able to move forward on several different fronts that were previously closed to us,” he added. “The possibilities seem endless.”
Basic research keeps elucidating new aspects of beta cells; there seem to be several subtypes, so the gold standard for duplicating the cells is not entirely clear. Today, however, there is “a handful of groups in the world that can generate a cell that looks like a beta cell,” says Hebrok, who currently acts as scientific advisor to Semma and Sigilon, and has previously advised ViaCyte. “Certainly, companies have convinced themselves that what they have achieved is good enough to go into patients.”
The stem cell reprogramming methods that the three companies use to prompt cell differentiation create a mixture of islet cells. Beta cells sit in pancreatic islets of Langerhans alongside other types of endocrine cells. Alpha cells, for example, churn out glucagon, a hormone that stimulates the conversion of glycogen into glucose in the liver and raises blood sugar. Although the companies agree on the positive potential of islet cell mixtures, they take different approaches to developing and differentiating their cells. Semma, which was launched in 2014 to commercialize the Harvard group’s work and counts Novartis among its backers, describes its cells as fully mature, meaning that they are wholly differentiated into beta or other cells before transplantation. “Our cells are virtually indistinguishable from the ones you would isolate from donors,” says Semma chief executive officer BastianoSanna
To get around the donor problem, researchers, including the team at UCSF has been working on nudging stem cells into becoming fully-functional pancreatic beta cells for the last few years. Still, there have been some issues in getting them all the way there.
“The cells we and others were producing were getting stuck at an immature stage where they weren’t able to respond adequately to blood glucose and secrete insulin properly,” Hebrok said.
“It has been a major bottleneck for the field.”
“We’re finally able to move forward on a number of different fronts that were previously closed to us,” Hebrok added. “The possibilities seem endless.”
Regardless of starting cell type, the companies say they are ready to churn out their cells in large numbers. Semma, for example, can make more islet cells in a month than can be isolated from donors in a year in the United States, Sanna says, and the company’s “pristine” cells should perform better than donor islets, which are battered by the aggressive techniques required for their isolation.
As these products, some of which have already entered clinical trials, move toward commercialization, regulatory agencies such as the US Food and Drug Administration (FDA) and the European Medicines Agency have expressed concern about the plasticity of the reprogrammed cells. All three firms subject their cells to rigorous safety testing to ensure that they don’t turn tumorigenic. Before successful trials, companies won’t know the dose of beta cells required for a functional cure, or how long such “cures” will last before needing to be boosted. There’ll be commercial challenges, too: while the companies are investing heavily to develop suitable industrial processes, all acknowledge that no organization has yet manufactured cell therapies in commercial volumes.
Nevertheless, there’s growing confidence throughout the field that these problems will be solved, and soon. “We have the islet cells now,” says Alice Tomei, a biomedical engineer at the University of Miami who directs DRI’s Islet Immuno-engineering Laboratory.
“These stem cell companies are working hard to try to get FDA clearance on the cells.”
Protecting stem cell therapies from the immune system
Whatever the type of cell being used, another major challenge is delivering cells to the patient in a package that guards against immune attack while keeping cells fully functional. Companies are pursuing two main strategies:
- Microencapsulation, where cells are immobilized individually or as small clusters, in tiny blobs of a biocompatible gel.
- Macroencapsulation, in which greater numbers of cells are put into a much larger, implantable device.
ViaCyte, which recently partnered with Johnson & Johnson, launched its first clinical trial in 2014. The trial involved a micro-encapsulation approach that packaged up the company’s partially differentiated, ESC-derived cells into a flat device called the PEC-Encapsulation. About the size of a Band-Aid, the device is implanted under the skin, where the body forms blood vessels around it. “It has a semipermeable membrane that allows the free flow of oxygen, nutrients, and glucose,” says ViaCyte’s chief executive officer, Paul Laikind. “And even proteins like insulin and glucagon can move back and forth across that membrane, but cells cannot.”
The trial showed that the device was safe, well-tolerated, and protected from the adaptive immune system—and that some cells differentiated into working islet cells. But most cells didn’t engraft effectively because a “foreign body response,” a variant of wound healing, clogged the PEC-Encap’s membrane and prevented vascularization. ViaCyte stopped the trial and partnered with W. L. Gore & Associates, the maker of Gore-Tex, to engineer a new membrane. “With this new membrane,” says Laikind, “we’re not eliminating that foreign body response, but we’re overcoming it in such a way that allows vascularization to take place.” The company expects to resume the trial in the second half of this year, provided it receives the green light from the FDA.
Semma is also developing macro¬-encapsulation methods, including a very thin device that in prototype form is about the size of a silver dollar coin. The device is “deceptively simple, but it allows us to put [in] a fully curative dose of islets,” Sanna says.
Semma is also investigating microencapsulation alternatives. At the same time, the company is advancing toward clinical trials using established transplantation techniques to administer donated cadaver cells to high-risk patients who find it particularly difficult to control their blood glucose levels. These cells are infused via the portal vein into the liver, and patients take immunosuppressive drugs to prevent rejection.
Sigilon is working on its microencapsulation technology. Launched in 2016 on the back of work by the labs of Robert Langer and Daniel Anderson at MIT, the company has created 1.5-millimeter gel-based spheres that can hold between 5,000 and 30,000 cells (Nat Med, 22:306–11, 2016). Each sphere is like a balloon, with the outside chemically modified to provide immune-protection, says Sigilon chief executive officer Rogerio Vivaldi. “The inside of the balloon is full of a gel that creates almost a kind of a matrix net where the cells reside.”
In 2018, shortly after partnering with Eli Lilly, Sigilon and collaborators published research showing that islet cells that were encapsulated in gel spheres and transplanted into macaques remained functional for four months. The company has not disclosed a time frame for a type 1 diabetes trial “but we’re moving pretty quickly,” says chief scientific officer David Moller.
Conclusion
To conclude, all three firms hope to extend their work to treat some of the 400 million people worldwide with type 2 diabetes, many of them eventually benefit from insulin injections. The recent endorsements from big Pharmaceutical underline the real progress in beta-cell transplants, says Aaron Kowalski, a molecular geneticist and chief executive officer at JDRF, a foundation based in New York that has funded research at ViaCyte and academic labs whose work has been tapped by Semma and Sigilon. “These companies all realize that if they don’t do it, somebody else will. It’s hard to predict exactly when, but somebody is going to make this work.”
- Published in Blog
ISSCA introduces new stem cell training courses web page for regenerative medicine practitioners
ISSCA has launched a new stem cell training web page designed to offer free information and resources to help physicians choose a training program best suited to their unique needs.
MIAMI, June 26, 2018—The International Society for Stem Cell Application (ISSCA) has launched a new stem cell training course web page, coordinated by Global Stem Cells Group affiliate Stem Cell Training, designed to help physicians access free information and resources on the newest instruction and training options in regenerative medicine training.
The new web page is designed to help physicians interested in adding stem cell procedures to grow their medical practice or enhance career advancement opportunities find stem cell training program options to enable them to find a training program best suited to their individual needs. ISSCA’s variety of stem cell training opportunities include:
• Online stem cell training course, ISSCA’s cutting-edge online course that teaches physicians everything they need to know to add adult stem cell-based procedures to their existing practice, or confidently transition to a regenerative medicine center. Offering the convenience of training from a home or office computer, this course prepares physicians in all the theoretical and practical knowledge needed to effectively and expertly administer stem cell therapies to patients, including harvesting and isolating stem cells.
ISSCA’s online training positions physicians to open their own stem cell center practice and join ISSCA’s expansive network. Successful completion of the online training course allows physicians to immediately begin offering cutting-edge regenerative medicine procedures to patients, establish themselves as experts in their fields, and enjoy the benefits of the growing regenerative medicine industry.
• Hands-on stem cell certification training courses, ISCCA’s intensive, two-day hands-on training course scheduled at various international locations provides attending physicians with expert instruction on autologous stem cell therapies in the field of regenerative medicine. Participants learn techniques and protocols for harvesting and isolating stem and regenerative cells from adipose tissue, bone marrow, and /or peripheral blood from live patients and administering the cells back to the patient
Course curriculum consists of comprehensive theoretical lectures and home study education, and two days of didactic and clinical experience. One day of post-educational on-site clinical assistance is also available upon request.
• Onsite training, ISSCA’s personalized, hands-on, onsite stem cell training brings stem cell specialists to your practice or clinic, anywhere in the world, to provide one-on-one training tailored to your practice’s specific requirements—saving time and money. The onsite training program offers participants a unique opportunity to grow their practice and achieve their specific practice goals by offering practice-specific regenerative medicine treatments to patients in their medical office or clinical setting.
The onsite training course provides participating practices with personalized theoretical information and hands-on training along with ongoing support for their clinical practice. Applications and protocols are provided by a Stem Cells Training faculty member with extensive experience in laboratory and clinical practice.
ISSCA’s onsite training specifications include:
1. Equipment and supply delivery. The Stem Cell Training team
delivers and sets up all equipment and supplies necessary for the training session to take place and will leave the physician’s team
fully qualified to start its own stem cell treatment practice.
2. Expert trainers. ISSCA’s onsite stem cell training course takes a highly visual and interactive approach. Expert trainers teach and supervise the hands-on process using live patients and different protocols for the extraction, isolation, and application of PRP, adipose- and bone marrow-derived stem cells.
3. Multimedia access. ISSCA provides physicians participating in its onsite training program access to its library of high-resolution, step-by-step procedure videos and ongoing online and telephone support for clinical equipment, inquiries or concerns for the practice’s future use and reference.
• Fellowship in cell therapy and tissue engineering. Recognizing the need for knowledge of stem cell protocols among physicians and healthcare professionals, ISSCA and Stem Cell Training created the Fellowship of Stem Cell Therapy and Tissue Engineering program. The fellowship focuses on stem cell therapies involving the potential replacement of cells or organs that are diseased, injured, infirmed, ailing or aged
In this modular training program, a group of experienced academic scholars involved in stem cell transplantation present a series of topics covering the general principles and practices of stem cell
biology and evidence-based treatments that physicians can apply to optimize the health of their patients. Fellowship course details and objectives include:
• A detailed program offering hands-on experience in stem cell characterization and laboratory applications
• An opportunity to learn cell culture processes including plating, trypsinization, harvesting, and cryopreservation
• Gaining the ability to understand and apply quality control tests including cell count, viability, flow cytometry, endotoxin, mycoplasma, and sterility
• Learning to perform CGMP functions including clean room maintenance, gowning, and environmental monitoring
• Establishing insight on relevant applications of stem cell processing and regulations that apply to a certified facility
• Receiving the tools necessary to implement regulatory and clinical guidelines when setting up a GMP facility
• Providing participants with copies of presentations, procedural protocols, and all forms associated with a GMP facility, as well as case books and full protocols for approximately 30 indications
• Demonstrating the ability to perform clinical procedures including lipoaspirate and bone marrow isolation, and reintroduction of stem cells for various indications
The new ISSCA stem cell training web page also features an informative blog that publishes four new articles in the field of regenerative medicine weekly.
To learn more, visit the ISSCA stem cell training web page, email info@stemcellsgroup.com, or call 305-560-5337.
About ISSCA:
The International Society for Stem Cell Application (ISSCA) is a multidisciplinary community of scientists and physicians, all of whom aspire to treat diseases and lessen human suffering through advances in science, technology and the practice of regenerative medicine. ISSCA serves its members through advancements made in the specialty of regenerative medicine.
The ISSCA’s vision is to take a leadership position in promoting excellence and setting standards in the regenerative medicine fields of publication, research, education, training, and certification.
As a medical specialty, regenerative medicine standards and certifications are essential, which is why ISSCA offers certification training in cities all over the world. The goal is to encourage more physicians to practice regenerative medicine and make it available to benefit patients both nationally and globally. Incorporated under the Republic of Korea as a non-profit entity, ISSCA is focused on promoting excellence and standards in the field of regenerative medicine.
Stem cell training web page launch
- Published in Press Release
Platelet-Rich Plasma For Bone Healing: Myth or Fact?
Platelet-Rich Plasma has a proven record for healing soft-tissues and other living tissues. But can it actually heal the bones itself?
This could mean PRP, when applied to an affected area whether it’s an elbow joint or knee or back bone area, actually heals everything within it’s reach including the bones. Is that really why PRP actually works?
Let’s examine.
Platelet-Rich Plasma For Bone Healing
Bones are not just lifeless matter attached to living tissues. It’s as much living as the tissues themselves. And just like the tissues, it’s constantly changing too. The old bone cells are broken down and replaced with new ones in a three-part process called bone remodeling the involves resorption (digestion of old bone cells), reversal (new cells are birthed) and formation (new cells turn into fully formed bones).
This process, just like any other biological processes in the body, requires hormones and growth factors. Some of the names include parathyroid hormone (PTH), calcitriol, insulin-like growth factors (IGFs), prostaglandins, tumor growth factor-beta (TGF-beta), bone morphogenetic proteins (BMP), and plain old cytokines. For this discussion we need to remember only one thing: a large cytokines and growth factors are involved in bone remodeling process.
Which means we accelerate the bone remodeling process by supplying these cytokines and growth factors as suggested by studies like this, this, this, this, this and this.
Why Platelet-Rich Plasma?
Autologous Platelet-Rich Plasma (PRP), being completely “whole and natural” can more closely simulate a highly efficient in-vivo situation that anything else out there that are made up of artificial recombinant proteins. In PRP, we are taking advantage of the biological benefits of growth factors whose functions we know as well as those we do not know of yet. From the 15+ factors we know are in PRP including platelet derived growth factor (PDRF), transforming growth factor-beta (TGF-beta), platelet factor 4 (PF4), interleukin 1 (IL-1), platelet-derived angiogenesis factor (PDAF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), platelet-derived endothelial growth factor (PDEGF), epithelial cell growth factor (ECGF), insulin-like growth factor (IGF), osteocalcin (Oc), osteonectin (On), fibrinogen (Fg), vitronectin (Vn), fibronectin (Fn) and thrombospontin-1 (TSP-1)… we’re actually supplying a “holistic” set of nutrients for healing that cannot be mimicked by those obtained artificially.
Platelet-Rich Plasma For Bone Healing
Organic Fertilizers For The Body
The PRP difference is like adding chemical fertilizers versus organic fertilizers on plants. Chemical fertilizers are rich in essential nutrients that we know are needed for crops. On the other hand, organic fertilizers supply nutrients not only to the plants but also to the soil, improving the soil structure and tilth, water holding capacity, reduces erosion as well as promote slow and consistent release of nutrients to the plants itself.
Clearly, organic fertilizers are better, aren’t they?
Platelet-Rich Plasma are like organic fertilizers for our body.
Bonus: Strong Antimicrobial Properties
It seems that the Platelet-Rich Plasma’s healing function has synergistic function to anti-microbial properties. A new study confirms that using Platelet-Rich Plasma in surgeries may have the potential to prevent infection and to reduce the need for costly post-operative treatments.
That’s a nice bonus for the organic fertilizer of our bodies. Perhaps, there are more. So why wouldn’t anyone not take advantage of them?
The scope of Platelet-Rich Plasma is growing as the scientific community continues to unearth its inherent properties. PRP is an unignorable, and unavoidable component of healing.
- Published in Blog